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COMPARISON OF SEVERAL METHODS FOR OBTAINING THE TIME
SYSTEMS TO EITHER A UNIT IMPULSE OR ARBITRARY

FREQUENCY-RESPONSE DATA 1
By JAAWIJ. DONEIMNand CAEL R. Huss

SUMMARY

Several methode oj oMaininf7the time reapcme oj linear
system8 b either a und impulse or an arbitrary ifqnd from
jrequenqi-response data are de+wribedand compared. “

Comparison~indicate -hid? the methodsgive good accuracy
when applied to a 8econd+xd.ei-system; the main di$erawe ~
the required computing time. i%veral of the methixk w@n
applied to higher order 8y8i%nwrequire ec.cemive compuiing
time in order to obtain the 8ame degree of acouracy. The
methods generally cla+wijiedm imwr8e tipti tramajorm
methods were jound to be most e$eetive in determining the
re8pon8e to a unit impulee from jrequenoy-re+qwme data of
higher order systems.

Some dku.wion and tzampks are given oj the U& oj the
method8ae $ig?&latu-ana.ly&istihniquw in predicting loads
and motions oj a jkiible aircrafi on the baei.soj simple eaku-
lati.ow when the aircra~ frequen~ rexporweis known.

INTRODUCTION

The frequency-response type of analysis used on linear
systems has found intensive application in the field of air-
craft stability and in the determination of overall dynamic
characteristics of an aircraft. In fact the current trend
to perform analysis on flight test data in frequency-response
form appears to be gaining favor especially in the we of
flexible aircraft. Considerable emphasishas, therefore, been
given to methods of detwmhing the frequency response of
a system from transient rcaponses. A concise r&wrn.6and
comparison of methods for obttig the frequency response
from transient reaponse9are pre9ented in referemx 1.

This report briefly considers the nd step in the process—
the converting of the information contained in a frequency
response to the time plane in the form of the rcaponse to
rLunit impulse. For certain purposes this conversion gives
data in more useful form. The response of a linear system
to rLU@ impulse may be used in conjunction with Duhamel’s
(superposition) integral to determine (1) the aircraft tran-
sient response to any type of input or (’z) the input required
to cause any required aircwft transient response.

It appears that methods of converting frequenoy-response
data to transient data present a flightdata-analysis tech-
nique which permits the prediction of aircraft motions
and loads for a flexible airoraft without knowledge of the
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equations of motion relating the input and output. These
m&%ods also bypsss the need for compu~g transfer-
function eoeflicients or stability derivatives in predicting
these loads and motions. Such predictions are important
in anticipating the motions and loads for more hazardous
aircrsft maneuvers. These methods are also useful in
predicting time responses of compkated linear systems
whose frequency response is known.

The purpose of this report is to collect and briefly compare
a few of the methods now available for performing this
operation. The methods are compared on tbe bssis of
acouracy, computing time required, and applicability of
the ~ethod to higher order systems. Some extensions of
these methods are also given. With such information avail-
able, engineam may then select the method -ivhieh best
fits their needs.

SYMBOLS

l?(t)

H(b)
H(s)

h(t)
~~

j
KIJf,,&
K,L
M

:

n
P
Re [H(kI)]

r
8
t
x
X(8)
x(t)

IIx:

function of time
frequency response of a system
transfer function (in terms of Laplace variables)

relating input and output
time response of a system to a unit impulse

index of summation
transfer coeilicients defied by equation (8)
limits on summation of P-transform
Ma& number
index of summation of P-transfon.n
total number of data points used in solution of

equation (9)
limit of summation
polynomial transform operator
real part of frequency response defined by

equation (21)
.ordjnate of,pulse used to fit Re [H(h)]
Laplaee variable, c+b
time, aec
output ‘
Laplace transform of z(t)
response of a system to an arbitxary input

amplitude ratio of frequency response
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indicates increment
input
time history of input to a linear system
pitohing velocity, radians/see
dummy time variable of integration, sec
phase angle, deg
phase angle between output z and input 6 of

frequency response; negative phase anglw
indicata lag

circular frequency, radians/see
damped natural frequency, radians/see “
fimdamental frequency, radians/see
undamped natural frequency, radians/see

elevator
index of summation indicating row
index of summation indicating column

A tilde indicates polynomial transfo~ -of function; for
example, fi(z) denotes polynomial transform of F(t).

DESCRIPTION AItb DISCUSSION OF METHODS “

In this section the methods for dehmining the response
to a unit impulse and the methods for obtaining the response
to arbitrary inputs are discussed.

The methods for obtaining the time response to a unit
impulse fkom frequency-response data fall into several basic
mtegories which may be generally classided as follows:

(1) Inverse Laplace transform methods
(2) Fourier method .
(3) Other methods

These methods are brieiiy outlined to indich the techniques
involved. In order to describe the computations required
and the wcuracies obtained, each method is applied to the
frequency-response data of figure 1 which deiines a simple
second-order system described by the transfer-function

. 1
@=&+&+lo (1)

It is usually intended that thesemethods be applied to higher
order systems as will be shown later in the report. “No
attempt is made to repeat the development of the methods
since this information may be obtained from the references.

INVERSELAPLACB TRANSFORMMETHODS

Floyd’s method.—The method developed by’ George F.
Floyd and described in detail in reference 2 is referred to as
Floyd’s method. Floyd shows that the inverse Laplace
transform h(t) of H(s) given by the integral

is for all positive values of time equivalent to

‘h(t)=:f“ Re [H(b)] cos ta,@

(2)

(3)

This operation is based on the assumptionsthat E(8) may
be written as the ratio of two rational polynomials ins with
real and constant coefficients, that linz H(8)= O, and that
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FIGUSE l.—Frequenoy raponee of seoond-ordersystem.

: (S)++;+ lo.

H(s) has no poles in the right half of the s-plane or on tho
imaginary ti. The procedure for performing the integra-
tion required by equation (3) is to plot Re[H(iu)] against w
and then to approximate the exact shape with a series of
stnighfAine segments. The straight-line approximation is
written as a sum of trapezoidal functions and equation (3) is
applied to each of the trapezoids; the remdting time functions
due to each trapezoid are then added to obt& h(t).

A simple illustration is shown in sketch A. The time

Re[H(&J]

Sketoh A,

function awociated with a typical trapezoid (as shown by
the cross-hatched section) may be expressed aa

W=W%Y%9
where

wb+w~
fJ2.—

2

(4)
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In general for n trapezoids the time response is given by

‘)(%9W)=:@( ~jt (6)

In figure 2 the real part Re [H(h)] of the simple second-
order system computed from figure 1 is shown plotted
~grinst u. The function h(t) is then easily evaluated since

tables of’~ are given in referenca 2. In the upper part of

figure 2, two straight-line fits to the Re [H(h)] are shown,
one a five-line fit and the other an eleven-hne fit. For
clarity, however, only the pointe and not the connecting
lines of the fit are shown. In the lower part of iigure 2 the
resulting responses to a unit impulse computed by Floyd’s
method are compared with the exact response to a unit
impulse. The accuracy of l?loy~s method depends on tlie
number of lines used to fit the Re [H(h)] and the location
of the cutoff frequency. The cutoff frequency is defied as
the maximum frequenq at which the Re [H(&o)] was fitted.
It should be noted that the limits of the definite integral of
equation (3) are O to ~; however, in the practical case the
Ro [H(h)] is cut off at some finite frequency. This error is
reflected at the low values of time, especially at t=O. For a
given number of lines, the accuracy also depends on the
judicious fit of the lines.

Numerioal-integration method.-In order to use automatic
computing machines to perform the inveme Laplace trans-
form method, the necessary operations indicated by equation
(3) are performed in the following manner by using a numer-
ical-integration method. For a given value of time t, the

.
,10

11,

— Exact
~ .06

\

0 5- linefit
3 ‘ n Ii-line fit

204~’

$ ,02

0
{

$ [

~ -
F

-,020 5 10 15 20 25 30
Frequency,w,radians/sw

.14

-c

j ,10
i%
.~.oa
=c
:.06
~ o
~.04
c
~ 02[3“
cc

o .5 1.0 L5 2.0
Time, t, sec

F~auwa2.—Time response to a unit impulse obtained from Floyd’s
mothad comparedto the exact vsks for the second-ordersystem.

product curve Re [H(b)] cos i% is evaluated over the u
range and integrated by numerical-integration techniques
which give one point on the time history of the response to
a unit impulse. By repeating the above computation for
all the desired values of time, the time response can be
obtained.

This method was applied to the frequency-response data
of figure 1. The accuracy of the method is shown in figure 3.
In the upper part of figure 3 the error due to the interval
Au chosen for the computation is shown by the comparison
between the circle and squar{ symbols. The accuracy of
the computation for the case of Aw= 1.0, as indicated by the
circle symbols, was not satisfactory beyond t=2.O seconds.
This result is to be eqected since the interval Aw= 1.0 was
too large to permit numerical-integration methods to perform
adequately the integration required by equation (3).

Rectangular-pulse method,—A method for determhing
the time response to a unit impulse fkom frequency-response
data has been given in reference 3 and has been recently
extended in reference 4. It is referred to herein as the
rectanguhw-pulse method. The method involves the use
of tables for time-plane values equivalent to unit rectangular
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pukes of the Re [E(io)]. The method requires fitting the
Re [H(h)] with a series of rectanguk pulses or a staircase

“ function so that the area under tie curve is equal to the
area of the pulse in each case as is shown in sketch B. This

Sketoh B. “

fitting although made visually should be made carefully.
If the ordinate of pulse 1 is designated as n, of puke 2 as T1,
and of pulse n as r., then the time response to a unit impulse
corresponding tQthis Re [H(b)] is given by

h(t) =~rJ,(t) (6)

The time functions h,(t), LJt), h@ associated -with each
of the rectangular pulses shown in sketch B are tabulated in
reference 3. These time functions are the inveme Fourmr
transforms of unit rectangular pulses of the Re [27 (ti)].

The method was applied to the frequency-response data of
figure 1. The fitting of the staircase function to the
Re [ZZ(ti)] is illustrated in the upper part of figure 4 and the’
accuracy of the method is demonstrated in the lower part of
figure 4. Again the error in the computed response to the
unit impulse at t=O is due to cutting off the Re [17(zh)] at
“co=20 radians/see and not integrating to co as indicated by
equation (3).

l?OUIUEB bU?XHOD
,

Fourier response to unit impulse.-k. referenca 5, the
response to a unit step input is derived by the Fouri6r
method. Dithrentiating this response gives an expression
by which the response to a unit impulse may be approxi-
mated. For a linear system characterized by its frequency

response with amplitude ratio ~ and phase angle At, this
,,

expression is

In using equation (7) the choice of the fundamental frequency
UJdetermines the accuracy and length of the computations.
Sim the accuracy is aflected by or it has been found by ex-

perience that a value COP% can be used as a &od &t esti-

mate, where an is the undamped natural frequency of the
system. Instead of CO,,the value of frequency at which the
amplitude ratio peak for a lightly damped system maybe
used. This value may be determined from the frequency
response of the system.

In table I the numericaI computation of Ii(t) for the system
defined by the frequency response of figure 1 is shown. In
this computation, 14 terms are carried in the expression for

COMMXMYIE FOR AERONAUTICS
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to a unit impulse obtained from tho
compared to the exaot valuss for tho

i(t), and more accuracy may be obtained, of course, by cq.
ing more terms. The accuracy of the method is shown in
6gure 5 by the comparison between the computed and exact
responseto the unit impulse.

OTHER METHODS

Schumacher’s method,—The method of reference 6 per-
mits the computation of transfer-function coefficients by
wsuming the shape of the transfer function relating the input
md output and then curve fitting this relation to the air-
maft data in frequency-response form. Once the transfer-
hmction coefficients are known, the system is completely
Jpecifiedsince the response to a unit impulse input or any
~ther‘arbitrary input may then be computed by the normal
methods available for solving differential equations, To
Uustrate the method a sample compuhtion is performed by
using the system defined in figure 1. The ditlerential equa-
tion relating input 6 and output x for the frequency response
]hown in figure 1 is

D%+K,Dx+Ks=KJ (8)

By applying the vector leaat-squares method of reference 6,
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TABLE I

NtJMERICAL CALCULATION ILLUSTRATING
COMPUTATIONOFTHE FUNCTIONFOR THE

RESPONSETO A UNIT lMPULSE BY THE
FOURIER METHOD

n

1
2
3
4
5
6
7
8
9

10
11
12
13
14

2n– 1

1
3
5
7
9

11
13
15
17
19
21
23
25
27

[
+%=0.641

-1

(2n–l)wf

0.64
1.92
3.20
4.48
5.76
7; 04
& 32
9.60

10.38
12.16
13.44
14.72
16.00
17.28

0.0970
.0760
0520

:0350
.0240
.0170
.0130
.0100
.0079
.0064
.0063
.0044
.0038
.0033

– 22
–61
–91

–111
–124
–133
–140
–145
–149
– 162
–155
–167
–159
– 160

h(~)+ [0.097 COS (0.64t–22) +0.076 COS (1.92t–61) +

0.052 COS (3.2t-91) +0.035 COS (443t– 111)+
0.024 00s (5.76t– 124)+0.017 SOS(7.04t– 133)+
0.013 cOS (8.32t– 140)+0.010 COS (9.6t– 14fj +
0.0079 00S (10.8W–149) +0.0064 00S (12.16t–162) +
0.0053 Cos (13.44t– 156)+0.0044 Cos (14.7X-157)+
0.0038 COS (16t–169)+0.0033 COS (17.W–160)]

the following set of simultaneous equations is obtained:

where

.

–jam(@’As),

o

9)

and

B== : SilldM

These equations are then solved simultaneously for’ the
trrmsfer coefficients Z& Kl, and K2. “From the form of
equation (8), it is seen that the response to a unit impulse
input is given by the equation

h(t) =% e+ sin Wt (lo)

where

“f’-
and

K,a.y
.4

A sample computation is show in table II.. Table II
demonstrates the computational steps involved in solving
for the transfer coefficients K,, K,, and & for the system

T
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g
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l-lml, t, Sec

FIGURE5.—Time ~onse to a unit impulse obtsined from the
Fourier method compared to the exaot values for the second-order
system.

TABLE II

NUMERICAL CALCULATIONS ILLUSTRATING
SCHUMACHER’S METHOD

z%
radiana/sec TII :$ ‘“= : 00s +& B==: sin&

o 0.1000 0 0.10000 *o
1 .0924 –33. 7 .07687 –. 05127
2 .0746 –63.’4 .03336 –. 06661
3 .0566 – 86.8 .00310 –. 05641
4 .0404 –104 o –. 00977 –. 03920
5 0298 –116. 6 –. 01334 –. 02666
6 :0226 –125. 8 –. 01316 –. 01s25
7 .0174 –132. 9 –. 01134 –. 01276
8 .0139 –13& 4 –. 01039 –. 00923

[

9.0

–O. 91336 “=-::l!l=[:–O. 15483 0

KS-1. 0002

KI=6. 0023

I$,=1O. 0053

rJ~=(l 992 “!

a=3. 0011

h(t)=1. ooloe+.~’ sin a 999t

●
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defined in figure 1. These transfer ccdicients are then sub-
stituted into equation (10), and a plot of this function is
compared with the exact response of the system to a unit
impulse input in figure 6.

This method gave additional information when applied to
the second-order system since the tier-function coef6-
cients were determined in th; process of the computation.
A reasonable amount of computing time was required, and
good accuracy was obtained. The method, however,
requires previous lmowledge of the form of the transform
function relating the input and output. Use of the curve-
fitting method on the higher order system did not protie too
effective in determ.mm“ “ g all the parametem of the flexible
system. If the form of the transfer function of the short
period is ~umed and fitted to that portion of the aircraft
frequency response associated with the short period then the
method ia very effective in determining the shorkperiod
transfer-function coefEcient9.

The P-transform method,-The E’-transform method, as
described in appendix A, d.iflers horn the other methods
presented in this report in that the time response to a unit
impulse can be determined directly tiom a Imown response
to a known arbitrary input. The computation is carried out
entirely in the time domain, bypassing the frequency plane
entirely, and does not require Imowledge of the transfer
function relating the input and output. The method also
represents a simple procedure for using the rwponse to a
unit impulse and d@rminin g the response to a gitien
arbitrary input.

An example of the method is shown in figure 7 in which
the assumed input ~(t) and output z(t) are given from which
the response to the unit impulse h(t) is computed. A
comparison of the computed response to a unit impulse and
the erect response to a unit impulse is shown in the lower
part of figure 7.

The z-tmnsform method.-The z-transform method as
described in appendix A, when applied to the continuous
linear systems, is very simikw to the P-transform method.
In fact, for a given time intervsl, the z-transform gives the
same results as the P-transform for these systems. The
computation obtained by using the z-transform is so similar

.-.
Time, t, sec

FIOUBE 6.—Time response to a unit impulse obtained from Schu-
macher%method comp=d to the esact valuesfor the secondarder
Syataln
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1

1

j
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Time, t, sec

FIanm 7.—Time reqxmae to a unit impulse obtained from tho
P-tramform method.compared to the exact valuea for the second-
order system.

to that obtained by’ using the P-transform that it is not
repeated herein.

RE3PONSE!rOAimmBARY INPUTS

The procedure for obt@ning the response to arbitrary
inputs when the response to the unit impulse is known is
simply a matter of applying Duhamel’s integral to the
responseto the unit impulse and time history of the arbitrary
input. A numerical method of performing this operation is
&o&n in appendix A of referance 3.

The response to a unit step input may be obtained by
mmerically integrating the rcaponse to a unit impulse by
using the integrating matrix given in reference 3. In like
manner, the response to a ramp input may be obtained by
numerically integrating the response to a step function.
The response to a triangular input is obtained by super-
position of the responses to various ramp inputs translated
along the time scale.

The response to an arbitrary input maybe obtbed from
the response to a unit impulse by the ~-transform method
by use of equation (A4) of the appendix.
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For directlv dete ‘mining the time nxmonse to an aribtrary
input from ~equency-r~-o&e data, &e Fourier method ~
perhaps the best known. The general method is indicated
in references 7 and 8. In gential, an input which can be
expressed m a Fourier series can be represented as

w =41+n~1f%m,(~Wt+#n./) (11)

The response to the input given by equation (11) of a linear

system whose amplitude ratio is ~ and phase angle is &

cm be written as I

For a few specific shapes of inputs the values of Bo, CntiPand

&, of equation (12) are known. Two wave forms fre-
quently used are the square wave and triangular wave and
examples of these are given.

Itesponse to a square wave.—As indicated in reference 6
the Fourier series for n unit square-wave input ~(t) maybe
written as

1— sin (2n—1)@,tf3(t)‘~i+ ~fJ‘2n-1 (13)

and the response to this unit step input of a linear system

of which the amplitud6 ratio is ~~ and the phase angle is

~=~is given by
.,

Lx
+

2 m 6 (la-l)u,
-zW=; : .Bo+rn.l 2n—1 sin [(2n—l)@/t+ M(2.-1) .,]

(14)

The accuracy of the computation depends on the choice of
the optimum fundamental square-wave frequency Uf and, w

before, a suitable value is usually WF$ where w.’ is the

lowest undamped natural frequency of the system.
Response to a triangular-wave input,-The speci.tlc form

of the input used in determining the time response to a
triangular-wave input is shown in sketch C where Tf is the

a(f)

-.
i

t
‘., ,/’ Tj

‘-. ,.~
‘~./ T,/2 -1

Sketah C.

total period of the input, Ti is the length of the base in

seconds, and ~ is the maximum value of the input.
Without giving the analytical development, representation

of the I?ourierseriesfor this triangukw-wave input is given by

a(t) -~1c2n_1 sin [(2n—I)w,t+l#J2n_J (15)

where
2T— radu/sec

‘FTI
(16)

Cj.-l= 4Z

()
[ ()1
1— cos (2n-l)7r # (17)

#(2n–1) ; f
f

and

42.-1=180
[ )1

~(2n–1) (* (18)

The response to this triangular-wave input of a linear system

of which the amplitude is ~ and the phase angle is ~~ is then

k-l) a,+ (f#J23)(h-l) J (19)

Here again a’ suitable first approximation is wF~ w..

For a higher order system such as a linear system with
several structural modes (as indicated by peaks in the
amplitude-ratio curve), the choice of a fundamental fre-
quency Wf becomes diilicult inasmuch as odd multiples of
Wf must give the natural frequency ~. and the frequency of
each of the higher structural modes

If an input is nonperiodic and cannot be expanded into a
Fourier series directly, the Fourier tmndorm of the input is
used. The tables of reference 3 may be used to determine
numerically the Fourier transform of an arbitiary input.
The procedure for computing the response of a linear system
to such an arbitrary input is briefly described as follows.
The Fourier transform of the output is formed by multiplying
the Fourier transform of the arbitrary input by the fre-
quency re9ponse of the system, which is the ratio of the
Fourier transforms of the output and input. The inverse
Fourier transform of this product is then taken which is the
time response of the system to the arbitrary input. The
tables of reference 3 may also be used to perform the opera-
tion of the inverse Fourier transform.

COMPARISON AND USE OF METHODS
COMPARISON OF MIXHODS

A comparison of the methods as applied to the second-
order system, deilned by the frequency response shown in
figure 1, maybe made by noting the differences between the
exact response to a unit impulse and the response computed
by each of the methods shown in figures 2 to 7. From these
-figures there appears to be little difference between the
accuracy of any one method over the others, and in each
case greater accuracy may be obtained at the cost of more
computation. For the comparisons shown, however, the
computing time required by the rectangular-pulse method
was .signiihmtly’ less than the time required by the other
methods. The Fourier response to a unit impulse required
the most time. A listing of the methods in the order of the
computing time required for the comparisons shown in
figurw 2 to 7 is given as follows:

Rectangular pulse (refs. 3 and 4)
Schumacher’s (ref. 6)
Floyd’s (ref. 2)
Numerical integration
Fourier reponse to a unit impulse

(All computations were performed on a desk-type computer.)
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A more severe test of the methods occurs when they are
applied to linear systems of higher order. In order to
demonstrate an application of this type, a further com-
parison of the methods was made by applying them to the
system deiined by the transfer function

225 (20)%)=8’+: +10 F+o::+loo &+o.28+225

The frequency response of this systa is shown in figure 8.
The real part of the frequency response shown in figure 9
was computed horn fibgwe8.by using the relation

Re[EI(ti)]= ~ COS@.a (21)

In figure 10 a comparison of the re9ponse to a unit impulse
computed by four of the methods is shown. For Floyd’s
method a 27-line fit to the Re[H(ti)] shown in figure 9
was used. For the rectangular-pulse method, the staircase
fit to the Re[E(ti)] was made with the interval A@= 1

--- I I I I I I I 1 I I t

-1 I I I I .1
.5 ,

-t Ill 1 I I 1 I

I h I I I

Fr~~, ~ rodions/sac

FIWEE S.-Frequency responseof higher order s@.ern.
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FrGum 10.—Time reapome to a unit impulse obtdxmd by four methods
compared to the exact valuea for the higher order system.

radian/see, and for the numericd-integmtion method, an
interval Au=O.5 radian/see was used. The response of
the linear system defined by equation (20) to a triangular
input shown in figure 7 of reference 3 w% used to compute
the points shown in figure 10 for the ~-transform method.
A time interval of At=O.1 second was used, The Fourier
response to a unit-impulse method was found to ,be im-
practical in this case because of the large amount of com-
putation required to obtain any accuracy. The accuracies
>f each of the four methods illustrated appmr to be
?quivalent.

USE OF TEE EESPONSE TO A UNIT IMPUISE AS A FLIGHT-DATA-ANALYSIS

TECENIQUE

As a further comparison of the methods applied to a higher
mder system, a typical longitudinal maneuver (l!f=O.82)
!or a flexible swept-wing airplane has been analyzed, In
his case the output was the pitching-velocity response
1at the ~n~ of gravity of the airplane and the input was

.
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the elevator angle 6,. The analysis of this maneuvar serves
to demonstrate the use of the method of obtaining the time
response of linear systems to fbunit impulse from frequency-
reaponse data QS a flight-data-analysis technique. The
Fourier integrals of the output 4 and input& were evaluated
by using automatic computing equipment and the methods
of integration of product curv~ were used. The frequency

response obtained by dividing the Fourier integral of the
output by the Fourier integrrd of the input is shown in

figure 11. The Re
[1
~ (b) computed horn the “frequency

response of figure 11 ~ shown in figure 12. I.n figure 13 a
comparison of the response to a unit impulse computed by
three of the methods is shown. For Floyd’s method a

‘37-lino fit to the Re
[1
# (b) shown in fiegure12 w-asused and
a

hi(t) wns computed at enough values of time to deiine
adequately its shape. For the rectangular-pulse method,

[1
the staircnsefit to the Re # (ti) ma made with the interval

Aw= 1 radian/see and, for tie numerical-integration method,
an interval of Au=O.5 radian/see was used. In the case
of the numerical method, points are shown in figure 13 only
at time intervals of 0.1 second in order to compare accuracies.
Several attempts were ‘made to compute the response to

.
Frequency, U, radians/see

FIQURE 11.—A typical frequermyrcs~nse obtained from~flight date
of a flexible airplaneat M= 0.82.
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Frequency,U, mdardsw

FIQUEB 12.—W part of the typical frequenuy rqonae obtained from
flight data of a flexible airplane at Mu O.82..
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Frcwrm 13.—Time ~anee to a unit impulse obtained by three
methcde for the typical frequency response obtained from flight
data of a flexible airplane at M= O.82.

the unit impulse by the ~-tmmsform method using the
original elevator input &(t) and output d(t) shown in figure
14. The computations were made at time intervals ranging
from 0.02 second s Ms 0.1 second but did not yield satis-
factory accuracy. It appeara that this inaccuracy is
primarily due to the sensitivity of the method to small errors
in the first few terms of the response or input.

Time histories of the original elevator input&and pitching-
velocity rcaponse 4 me shown in figure 14. The elevator
input & has also been used as a forcing function with the
response to a unit impulse shown in figure 13 to compute a
time history of d. The Duhamel method outlined in
appendix A of reference 3 with a time interval of 0.05 second
was used for these calculations. A comparison of this
computed 4 response with the original 4 response from a
flight teat is shown. in the lower part of figure 14. This
comparison shows the amount of error involved in the total
computation procedure (transferring the data in time-
history form to frequency-rtwponse form, then to the response
to a unit impulse, and finally to the response to an arbitrary
input by means of Duhamel’s integral).
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Time, t,sec

FIQumz 14 .—comparieon with the actual flight record of the calculated
pitching-velocity response using the earne input-output data as was
used to obtain the typioal frequenoy response of the flexible airplane
at U= O.82.

Another flight-test maneuver at .ZU=O.80 was selected
1with the other conditions approximately the same as the
previous data in order to see how well the response to a unit
impulse computed from one maneuver could be used to
predict the time response to an arbitrary input from a
different maneuver. The time histories of this maneuver
are shown in figure 15.- Also shown in the lower part of
fi@re 15 is the d(t) response calculated by application of
Duhamel’s integral to the response to a unit impulse given
in figure 13, and the elevator motion for the maneuver is
shown in the upper part of figure 15. A comparison of the
computed and measured d response m the lower part of
figure 15 gives some indication of -how well the motions of
an aircraft ean be predicted by a detailed walysis of a
single maneuver.

CONCLUDING REMARKS

Several methods were compared for obtaining the time
response of linear systems to either a unit impulse or arbitraxy
input from frequency-response data. The methods were
compared on the basis of accuracy, computing time required,
and applicability to higher order linear systems.

The applhtion of each of the methods to a simple seeond-
order system indieati little difference between the accuracy
of one method over the others, and, in general, it would be
expected that greater accuracy could be obta-med for each

1
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~Gum 16.—@mparieon of the predioted pituhing-velooity response
with the aotual @ght reoord obtained from the flexible airplane at
hf=o.so.

]f the methods at the cost of more computing time.
For higher order systems the three methods gmerally

hsiiied w inverse Laplace transform methods were most
Jlective. They gave good results for n moderate amount
]f computation. All of these methods are based on the
n-aluation of the form of the inverse Laplnce transform
quation for positive value9 of time.

The methods generally classified as Fourier methods gave
good accuracy when applied to the second-order system.
I’he acenracy of these methods was found to depen~ on the
>hoiceof a fundamental frequency @fi For simple systems

~suitable value was found to be uJ——~ where Q. is the Ioweat

latural frequeney. For higher order systems the choico of
Jf beeomes more ~cult. The Fourier response to a unit-
mpuke method was found to be impractical in the cam
)f higher order systems because of the large amount of
amputation required to obtain accuracy.

Schumacher’s method gave additional information when
Lpplied to the secondader system since the transfor-
unction coefficients were determined in th~ process of the
amputation. This method required a reasonable amount
)f computing time and gave good accuracy. The method,
Lowever, requires previous knowledge of the form of tho
ransfer function relating the input and output. Use of the
nethod on higher order systems did not prove too effective
n determiningg all the parameters of the flexible system, A
mluable use of the method was found in fitting the known
hort-period transfer function to only the short-period por-
,ion of the flexible+ystem frequency response to determine
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the short-period transfer coefficients.
The ~-trrmsform method is different from the other

methods presented in that the time response to a unit
impulse can be determined directly from a lmown response
to a lmown arbitrary input. The computation is carried out
entirely in the time domain and bypassea the frequency
plane entirely. The method also represents a simple proce-
dure for using the response to a unit impulse and determining
the response to a given arbitrary input. The method,
hovmver, when npplied to the fight data of this report did
not yield satisfactory accuracy. It appears this is primarily
due to the sensitivity of the method to errors in the first few
tmma of the response or input.

For all the examples computed in this report the rectan-

gular-pulse method of NACA Technical Note 3598 required
less computing time, for the smne degree of accuracy, than
any of the other methods used to obtain the time response
to a unit impulse from frequency-response data.

When an aircraft frequency response is known, it appears
that these methods may be used as a ilightdata-analysis
technique which permits prediction of aircraft motions and
loads without knowledge of the equations of motion relating
the inputs and outputs for a flexible aircraft.

I /
LANGLEY AERONAUTICAL LABORATORY,

NATIONAL ADVISORY Cowmr EE FOR AERONATJTICS,

LANGLEY l?IELD, VA., hfarch 16’, 1958.

APPENDIX A

P-TRANSFORM AND z-TRANSFORM METHODS

TEE P-TIMNSFOEM METHOD

Recently a pew general operational calculus has been
introduced, the elements of which were given by Tustin in
reference 9, and the mathematics was formalized by Bubb in
reference 10. In this calculus, which appeamwell adapted to
the numerical analysis and synthesis of linear systems, a
polynomial transform or ~-transform of a function F(t) is
defined by the equation

P[F(t)]=fi(z)

=~$KF(m At)&

(Al)

where F(m @ is the ordinate of F(t) at an integral multiple
of a time interval ~. It may be noted that equation (Al)
may be obtained from the Laplace transform by setting
t=m M and z=e-’”, replacing the integral sign by a summa-
tion sign, and summing over the.limits m=O
inverse ~-transform is given by

F(t)=r’[fi(z)]
The superposition (convolution or Faltung)

tom=rn. The

(M)

integral, which
is also ‘known as Dnhamel’s integral, relate-sthe input ~(t),
output z(t),rmd response to a unit impulse h(t)(alsocalled

a memory function) of a liiear system and is given by

J

t
z(t) = a(7-)h(t-T)dT (A3)

-.

Bubb (ref. 10) shows that the ~-transform of equation (A3) is

5(z)= At;(z)h(z) (A4)

In the synthesis problem the input ~(t) and the output z(t)

me given and the response to the unit impulse h(t) is to be
calculated. This calculation is performed by forming the
p-transforms of z(z) and L$iz)and dividing by ordinary
polynomial division, 5(z) by 6(z), to get the ~-transforrn of

the response to the unit impulse

For practical cases, however, the summation is made over a
finite range of t values. The inverse ~-transfom to h(z)
then gives h(t), the time response to the unit impulse. An
example of this operation is *own in table III; the Imown
input 6(t) and output z(t) are shown in the upper part of
figure 7, and the computed response to the unit impulse is
compared with the analytic solution in the lower part of
@e 7.

This operational calculus is also well adapted to the solu-
tion of the analysis problem in which the. system response
to a unit impulse h(t) and the input function ~(t) are known
and the calculation of the system output z(t)isdw~med. The
P-transforms of h(t) and ~(t) are formed and multiplied
together by ordinary polynomial multiplication as indicated
in equation (A4). Since this operation is just the inveme of
the operation shown in table IJI, w illustrative example is
not shown. This method has been found to be a simple and
rapid means of applying the Duhamel process.

The value of this operational calculus liw in the fact that
all computations remain in the time domain and no transb .
tion to the frequency plane is required. Also, only simple
direct arithmetical procedures are required for solving
practical problams.

THE zJJ?RANSFORM METHOD

The z-transformation developed origimdly for the analysis
and synthesis of sampleddata systems is also applicable to
numerical solutions of continuous linear systems, as shown
in references 11 and 12. ‘The z-transform is defined by the
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TABLE III

NUMERICAL CALCULATION ILLUSTRATING THE P-TRANSFORM METHOD

.—

Time histories P-transforms Invema
I%ransform

hseo
Response to-a tit

‘?%;~~h~~mitInputi a(t) output, z(t) Inp@ s(z) m@ ~(z) imPll@ h(z)

o 0 0 0 0 c1014 0.014
.1 .1 .00014 . lx 000142 . 072Z 072
.2 . .2 .00100

.
.% : Oolow . low 106

3 .3 .00292 .* . oo29& . 11%? :110
:4 ‘.4 .00603 .4? . O060W . 117# 117
.5 .5 .01031

.
&# . 010312S . 10W 106

.6 .4 .01537 :.& . o1537d . 09&@ :096

.7 .3 .01994 .W . 01994Z7 . 077s7 077

.8 .2 .02316 .2%+ . 0231&@ . 066@ :066

.9 1 .02466 ld . 0246&& . 05W 053
1.0 o“ .02435 0. . 0243%40 - 04hlo :044

1.1 0 .02250 0 . 0226CW . 031w 030
1.2 0 .01977 0 . o1977z~ . 02&u :026
1.3 0 .01681 0 . 01681ZP . 02iz~ 021
1.4 0 .01393 0 . 01393Z14 .016214 :016
1.5 0 .01131 0 . ol131@ . Oltw .016
L 6 0 00903 0 .00903216 .006216 .006

‘1.7 o :00716 0 . oo71&?7 –. 004N -.004
1.8 0 .00552 0 . 00S5W8 . 01’wo. . 012.
. .

j--z) =3 55(Z)
At ~(z)

(
1 O+ O.00014Z+0.0010CM+ O.0029W+0.00603Z4+O.O1O3W+ . . . +0.0055%18 . . . . .

‘fi O+o.lz+o.w+o.w+ o.ti+ . . . +o.1.@ )

i(z) =0.014+ o.072z+o.lo6z~+ o.ll%3+o.l170?+ . . . +0.olzlw . . . . .

equation
I

numerical computation applying the z-transform to tho
z[F(t)]=P(z) continuous systems used in this report is so similar to that

=~O~(nAt)z-n (A6)
in which the-~-tmnsform is used th-atit is not repeated,

It should be noted that in reference 13 Salzer defines tho

Comparis& of equation (A6) and (Al) indicates the similar- symbol Z by

ity of the two transforms. The z-transformation may be Z=e-tit

obtained from the Laplace transformation by setting
t=nAt and Z=t+g, replacing the integral sign by a summa- This definition makes the z-transform, when applied to
tion sign, and summing over the limits n=O to n= ~. The continuous linear systems the same as the ~-tmnsform.
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